Small-x Physics in PHENIX Small-x Physics in PHENIX Small-x Physics in PHENIX the Physics in PHENIX Terry Awes Oak Ridge National Laboratory Workshop on Early Physic with Heavy Ion Collisions @ LHC Bari, Italy July 6-8,2011 #### Outline: - Introduction - Hadron-pair measurements in d+Au in PHENIX - Results - Small-x: mid-forward correlations - Very(!) small-x: forward-forward correlations - Discussion - Summary ** PhD thesis work of Beau Meredith, U Illinois http://arxiv.org/abs/1105.5112 #### Nuclear Modification in d+Au - The d+Au measurements at RHIC have served as the reference system to investigate Cold Nuclear Matter effects. - Observe little or no modification at mid-rapidity, but significant suppression with increasing rapidity (decreasing parton fraction x). Explanations: Shadowing, initial energy loss, gluon saturation,... PHENIX J/ψ ## **Nuclear Shadowing** Proton Parton Distribution Functions PDFs (from fits to ep@HERA) Ratio Nuclear nPDF to proton PDF*A 10 -2 10 ⁻¹ 10 -3 Extract nPDFs by fit to data on nuclei: e.g. SLAC, NMC, EMC DIS+DY+RHIC(d+A) Gluons dominate low-x region where shadowing is significant. e.g. EPS09NLO nPDFs: Eskola , Paukkunen, Salgado, JHP04 (2009)065 F.D. Aaron et al, [H1 Collaboration] Eur. Phys. J. C 64, 561 (2009) 10 #### The Color Glass Condensate - High density @ low-x leads to recombination of gluons, hence suppression. - Characterized by Saturation scale Q_s $$Q_S = Q_{0,S} \left(\frac{x_0}{x}\right)^{\lambda}$$ - Nuclear Amplification $xG_A = A^{1/3}xG_p$ (centrality dependence) - Region of importance: low-x (forward rapidity) Mechanism for gluon saturation $$Q_S \propto A^{1/3} / \chi^{\lambda}$$ See e.g., F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, arXiv:1002.0333 #### Parton kinematics in 2->2 process $$x_{Au} = \frac{p_{T}}{\sqrt{s}} (e^{-y_{3}} + e^{-y_{4}}) \qquad y_{4}, p_{T}$$ $$x_{1} \longrightarrow x_{2}$$ $$y_{3}, p_{T}$$ Example: Require Parton 3 in Forward direction $3 < y_3 < 4$ gives variation of x_2 with y_4 of parton 4 Select y of parton 4: Mid-rapidity $y_4 \sim 0$ Mid-Fwd: $x_2 \sim 10^{-2}$ Forward $y_4 \sim 3$: Fwd-Fwd $x_2 \sim 10^{-3}$ Decrease x_2 with decreasing p_T ## Singles vs. di-Hadrons #### PHENIX Detector at RHIC #### For this presentation: d+Au at 200 GeV - Central Arms $|\eta|$ <0.35: - π^0 's in EM Calorimeters - Hadrons (tracking) - Muon Arms - π^0 's in Muon Piston Calorimeter - Beam-Beam Counters #### PHENIX Muon Piston Calorimeter Small cylindrical holes in Muon Magnet Pistons, Radius 22.5 cm and Depth 43.1 cm #### MPC Particle Identification PH***ENIX** Preliminary $\sqrt{s} = 200 \text{ GeV p+p} \rightarrow \pi^0 + X$ PHENIX π⁰ ■ Brahms π⁻ η = 3 ▲ Brahms π η = 3.3 $3.0 < \eta < 3.4$ - ID π^{0} up to E ~ 25 GeV with MPC 3.1< $|\eta|$ < 3.9 - Limitations: tower separation and merging effects - Use π^0 s for 7 GeV < E < 22 GeV -> p_T max ~ 2 GeV/c - η 's to high p_T - Single Clusters for E > 15 GeV - Dominated by π^0 (~ 80%) -> Access higher p_T - Good agreement between PHENIX MPC π^0 and BRAHMS π^- at $\eta \sim 3.2$ for p+p at 200 GeV ## π⁰ R_{dA}: Centrality, Rapidity Dependence \blacksquare R_{dAu} with π^0 in MPC $$R_{dAu} \equiv \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N^{d+Au} / dp_T d\eta}{d^2 N_{inel}^{p+p} / dp_T d\eta}$$ # Suppression increases with: - Increasing centrality - Increasing rapidity - Decreasing p_T - I.e., with decreasing x_{Au} or increasing thickness. - More detail with correlation studies. ## di-Hadron (di_Jet) Δφ Correlations - Measure $\Delta \phi$ of all particle pairs - **Trigger particle** (usually leading p_T) - **Associate particle** (lower p_T) - Near side Associate particles - Away side Associate particles #### "Conditional Yield" $$CY = \frac{N_{pair}}{N_{trig} \varepsilon_{assoc}} = \frac{1}{N_{trig}} \int \frac{dN^{assoc}}{d\Delta \phi} d\Delta \phi$$ Number of correlated particle pairs <u>per</u> trigger particle after corrections for efficiencies, PID background, and subtracting uncorrelated background. ## Pair Nuclear Modification Factor: J_{dA} We define the di-Hadron or "Pair Nuclear" Modification factor" J_{dA} $$J_{dA} = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{\sigma_{dA}^{pair} / \sigma_{dA}}{\sigma_{pp}^{pair} / \sigma_{pp}}$$ Completely analogous to the Hadron Singles "Nuclear Modification factor" R_{da} $$R_{dA} = \frac{1}{\langle N_{coll} \rangle} \frac{\sigma_{dA}^{sgl} / \sigma_{dA}}{\sigma_{pp}^{sgl} / \sigma_{pp}}$$ One can show $$J_{dA} = I_{dA}^{trig} \times R_{dA}^{trig}$$ where $I_{dA} = \frac{CY_{dA}}{CY_{pp}}$ where $$I_{dA} = \frac{CY_{dA}}{CY_{pp}}$$ For di-Hadron studies, I_{dA} has been used most frequently. - Indicators of nuclear effects with pair measurements: - $J_{dA} < 1$, just as with $R_{dA} < 1$ - Angular broadening of correlation width new feature # An Aside: The problem with I_{dA} While the pair Yield, and J_{dA} , are independent of the trigger/associate particle label, the CY and I_{dA} do depend on the label. $$I_{dA}^{fwd,trig} \neq I_{dA}^{mid,trig}$$ $$I_{dA}^{fwd} = J_{dA} / R_{dA}^{fwd}$$ $$I_{dA}^{fwd} = J_{dA} / R_{dA}^{mid}$$ $$I_{dA}^{fwd-rapidity trigger}$$ $$I_{dA}$$ #### Mid-Forward di-Jets with $\Delta \eta \sim 3.4$ For p+p: $x_2 \sim 10^{-2}$ (d+Au A^{1/3} effect) d Backward direction (South) ← ## Mid-Forward Per-Trigger Correlations - Mid-Forward π⁰-π⁰ Correlations; Mid-rapidity triggered - Central d+Au shows suppression - No broadening apparent $$|\eta^{\text{mid}}| < 0.35, \, \eta^{\text{fwd}} = 3.0 - 3.8$$ # $Mid-Fwd J_{dAu} vs N_{coll}, p_{T}^{mid}, p_{T}^{fwd}$ #### MPC π^0 p_T - Mid-Fwd pair J_{dAu} with π^0 in MPC; Mid π^0 , $h^{+/-}$ - Suppression increases with: - Increasing N_{coll} - Decreasing p_T^{mid} - Decreasing p_T fwd - I.e., with decreasing x_{Au} or increasing thickness, just like R_{dAu} - Look at y-dependence #### Forward-Forward di-Jets at $\eta \sim 3.2$ For p+p: $x_2 \sim 10^{-3}$ (d+Au A^{1/3} effect) d Backward direction (South) ← #### Fwd-Fwd Per-Trigger Correlations - Forward rapidity Cluster–π⁰ Correlations - Use Zero-Yield at Minimum to subtract BG - Central d+Au shows significant suppression - Possible angular broadening in central d+Au $$\eta^{\text{clus},\pi 0} = 3.0-3.8$$ # Fwd-Fwd J_{dAu} vs N_{coll} , p_T^{fwd1} , p_T^{fwd2} MPC π^0 p_T Fwd-Fwd pair J_{dAu} with π^0 and Cluster in MPC - Suppression increases with: - Increasing N_{coll} - Decreasing p_T - Increasing y, i.e."going forward" - I.e., with decreasing x_{Au} or increasing thickness, just like R_{dAu} - So, what has been learned beyond R_{dAu}? # Systematize J_{dAu} Results - The advantage of the pair measurement is that it constrains the kinematics. - Estimate 2->2 parton kinematics ignoring fragmentation effects, i.e. - $p_T = p_{T1}/z_1 = p_{T2}/z_2$: Set z=1 - Calculate <x_{Au}> estimate as if hadrons=partons using bin averages: $$x_{Au}^{frag} \equiv \frac{\langle p_{T1} \rangle e^{-\langle \eta_1 \rangle} + \langle p_{T2} \rangle e^{-\langle \eta_2 \rangle}}{\sqrt{s}}$$ $$x_{Au} = \frac{p_{T}}{\sqrt{s}} (e^{-y_{3}} + e^{-y_{4}}) \qquad y_{4}, p_{T}$$ $$x_{d} \qquad x_{Au}$$ $$y_{3}, p_{T}$$ - Plot J_{dAu} vs. x^{frag} variable - Expect that x^{frag} underestimates x_{Au} - But if $\langle z \rangle$ constant then x^{frag} will be roughly proportional to $\langle x_{Au} \rangle$ # x_{Au} frag Dependence of J_{dAu} - Results show systematic dependence of J_{dAu} over large x_{Au} range. - No suppression for peripheral d+Au - Suppression for central d+Au increases strongly with x_{Au}^{frag} - Interpretation? Indicates very strong shadowing effect. CGC? Note: points for mid-fwd JdA are offset for visual clarity # Large Shadowing effect ## Summary - The observed suppression of hadron yields at forward rapidity in d+Au collisions at RHIC has confirmed interesting cold nuclear matter effects at small x. - Di-Hadron correlation measurements allow to further investigate the suppression with better constraints on the kinematics (fix range of relevant x values). - Di-Hadron correlations at forward rapidity probe very low x values and indicate very large suppression. - New input to nPDFs? Perhaps confirming Color Glass Condensate picture of Gluon Saturation? - In order to understand the results in Pb+Pb collisions at the LHC, it will be essential to understand the cold nuclear matter effects which may be large. - At fixed p_T mid-rapidity at the LHC probes the same x-region as forward at RHIC where we see strong cold nuclear matter effects. # **EXTRAS** # π⁰ (trigger,central)/π⁰ (associate,forward) ENIX # Correlation Widths, d+Au and p+p #### Trigger π^0 : $|\eta| < 0.35$, $2.0 < p_{\tau} < 3.0$ GeV Trigger π^0 : $|\eta| < 0.35$, $3.0 < p_{\tau} < 5.0$ GeV •Widths are consistent between p+p and d+Au (all centralities) within large statistical and systematic errors •No broadening seen (within errors)